

Power Transformers Basics

Transformers

Transformer Basic Objective

- Introduce Basic Transformer Theory as it Relates to Diagnostics
- Provide a Better Understanding of the Diagnostic Test Environment
- Identify Important Information that should be collected in the Diagnostic Test Process

Topics of Discussion

- Definition
- Transformer Types and Classifications
- Transformer Configurations
- Vector Groups
- Life Expectance
- Oil Preservation Systems
- Insulating Materials and Fluids
- Construction Forms
- Core Steel
- Nameplates
- Ratings
- Cooling Schemes
- Tap Changers (OLTC, DETC)

Transformer Categories

- Insulation System
 - Liquid Immersed
 - Dry Type
 - Gas Filled
- Construction
 - Tank Type
 - Core Type / Shell Type
 - 1 Phase / 3 Phase
 - Double-Wound, Multi-Winding, Auto
 - Winding Configuration and Type
- Application

Winding Configurations

- Delta
- Wye
- Auto
- Zig-Zag

Vector Groups

ZIG-ZAG

Vector Groups

Vector Groups – Head to Tail Relationship

Н3

DELTA H2

H1

WYE-STAR

	HV	LV
Phase A	H1-H3	X1-X0
Phase B	H2-H1	X2-X0
Phase C	H3-H2	X3-X0

Life Expectancy of Transformer Insulation

- 180,000 hrs or 20.55 years
- 110 °C Hottest Spot for 65 °C Temp Rise insulation
- Degree of Polymerization (200 -1200 DP)
- 1200 DP New Paper
- 200 DP at 150,000 hrs (end of life)

Heat
Moisture
Oxygen

Oil

- Most insulating fluids have very good properties, however the unique characteristics and attributes of each product must be considered when selecting an insulating fluid for a specific application.
- Purpose
 - a. Dielectric Withstand
 - b. Heat Exchange (Cooling)
 - c. Arc Mitigation

Winding Types

- 1. Disk Winding
- 2. Pancake Winding
- 3. Helical Winding
- 4. Cylindrical or Layer Winding

Disk Winding

- Each disk is wound in series
- Disks are stacked in parallel
- Uses crossovers (inner-outer)
- Used mostly in 34.5 kV and above core types

Courtesy of Delta Star, San Carlos, CAS

Disk Winding "Crossover" Close-up

Courtesy of Delta Star, San Carlos, CA

Disk Winding – Autotransformer Common Winding

Courtesy of Delta Star, San Carlos, CA

Pancake Winding

- Used in Shell-Type Transformers
- Stacked by Interleaved Scheme

LV Winding

Courtesy of ABB TRES - ABB Inc., Saint Louis, MO

Helical Winding

- Strands wound in parallel
- High-Current
- Low Voltage

Low-Voltage Winding

Courtesy of Delta Star, San Carlos, CA

OMICRON

Helical Winding – Low Voltage Winding

Layer or Barrel Winding

- Conductors wound side by side
- Layers can be wound on top each other
- Regulating Windings
- Tertiary Windings

Regulating Winding

Courtesy of Delta Star, San Carlos, CA

Construction Forms

Core Form

- Concentric
- Less Iron
- More CU

Shell Form

- Interleaved
- More Iron
- Less CU

Shell Form

Core Form

Core Steel

- Goal Minimize cost of ownership by minimizing losses
- Constructed from steel sheets (0.25 mm) that has a coating (insulation); stacked laminations
- Eddy Losses Proportional to the sheet thickness
- Hysteresis Losses Influenced by the metallurgical recipe and process
- Grain Oriented Align magnetic domains for the best performance in plane of intended flux paths.

Nameplates

- Identification: Manufacturer, Year, Serial Number
- Ratings
 - MVA, kV, BIL, Amperes, %Z p.u.
 - Cooling Class
 - Insulation Temperature Rise
- Vector Diagram
- Wiring Diagram
- Weights and Volumes
- OLTC, DETC Rating and Connection Mapping

Nameplate Drawing

Ratings

CLASS MVA	ONAN/ONAF/ONAF 18.00/24.00/30.00	3-PHASE 60 HZ CONT. TEMP.	Z SER. RISE	NO. 55°C	
MVA	20.16/26.88/33.60	CONT. TEMP.	RISE	65°C	
ΗV	138000 DELTA	VOLTS	BIL	550	KV
LV	13090 GRDY/7560	VOLTS	BIL	110	KV
LV NEUTRA			BIL	110	KV
IMPEDANCE	% AT 138000-1.	3090 VOLTS	AND	18.00	MVA

Vector Diagram

OMICRON

Cooling

- Prevent damage and loss of life to the insulation system
- Ages paper, pressboard, and oil
- Natural Convection
- Fans
- Pumps
- Water
- Directed Flow

Pumps, Fans, Radiators

Temperatures

- Top Oil
- Bottom Oil
- Average Oil
- Average Winding
- Hot Spot

Diagnostic Testing - OVERALL

- DGA
- Oil Screen
- Power Factor / Capacitance
- Exciting Current
- Transformer Turns Ratio
- Leakage Reactance
- DC Winding Resistance
- SFRA (Sweep Frequency Response Analysis)
- DFR (Dielectric Frequency Response)
- Thermal Imaging
- Insulation Resistance
- Partial Discharge

Transformer Tests

<u>Dielectric</u>	<u>Thermal</u>	<u>Mechanical</u>
DGA	DGA	SFRA
Oil Screen	Oil Screen	Leakage Reactance
PF/TD CAP	IR	PF/TD CAP
Exciting Ima	DC Winding RES	Exciting Ima
Turns Ratio Tests		DC Winding RES
DFR		
Insulation Resistance		
Partial Discharge		

Diagnostic Testing - FOCUS

- 1. Power Factor / Capacitance
- 2. Exciting Current
- 3. Transformer Turns Ratio
- 4. Leakage Reactance
- 5. Insulation Resistance
- 6. DC Winding Resistance

- 1. Overall PF/CAP
- 2. Bushing PF/CAP (C1, C2, EC)
- 3. Exciting Current (Phase A, B, C)
- 4. Surge Arresters
- 5. Insulating Fluids (Main Tank, LTC)
- 6. Turns Ratio (H-X, H-Y, H-T, X-Y, X-T)
- 7. Leakage Reactance (3ϕ Equiv, Per ϕ)
- 8. Insulation Resistance
- 9. DC Winding Resistance (H, X, Y)

Power Factor Tests

- 1. Overall PF/CAP
- 2. Bushing PF/CAP (C1, C2, EC)
- 3. Surge Arresters
- 4. Insulating Fluids (Main Tank, LTC)

Dependent on Transformer Type

- 2-Winding XFMR
- 3-Winding XFMR
- Autotransformers
- Will cause variances in test plans and protocols.

Instrument Basics

- Burden
- VA
- Sources V and I
- Meters V and I
- KVL and KCL
- Kelvin Connection

KVL and **KCL**

Kelvin Connection

- 4-Wire Technique
- Exclude the resistance from the measurement circuit leads and any contact resistance at the connection points of these leads
- Voltage sense leads (P3 and P4) "inside" the current leads (P1 and P2)

Overall PF/CAP

Туре	Main Insulation	Bushings	Surge Arresters	Insulation Fluids
2-Winding	CH, CL, CHL	Up to 8 C1, C2, EC	Up to 6 Stacks	Main Tank Tap Changer
3-Winding	CH, CL, CT CHL, CHT, CLT	Up to 12 C1, C2, EC	Up to 9 Stacks	Main Tank Tap Changer
Auto w/Tert	CAuto, CT, CAutoT	Up to 10 C1, C2, EC	Up to 9 Stacks	Main Tank Tap Changer
Auto wo/Tert	CAuto	Up to 7 C1, C2, EC	Up to 6 Stacks	Main Tank Tap Changer

Power Factor / Capacitance Measurement

Insulation can be modeled through:

- Capacitance (Physical Geometry)
- Resistance (Losses)

Losses can be categorized as:

- Conductive
- Polarization (60 Hz Range)

Power Factor measures bulk degradation:

- Moisture
- Aging
- Contamination

Power Factor / Capacitance

- "Applied Test" at Rated Frequency (60 Hz)
- Measurements Normalized to 20°C.
- Test voltages for a typical field test set range from below 100 V to as high as 12 kV. (IEEE Std. 62)
- 10 kV is Normally Applied
 - a) 2000 VA
 - b) 80,000 pF
- Data should be analyzed by:
 - a) Limits
 - b) Trending
 - c) Nameplate

3-Winding XFMR

Autotransformers WITH & WITHOUT Tertiary

Two-Winding Transformer Model

- Windings are short-circuited to remove unwanted inductance
- CH, CL and CHL insulation systems
- CH includes H-C1
- CL includes X-C1

GST Measurement

• Both CH and CHL are measured together

GST GUARD Measurement - CH

• CH is isolated by use of the GSTg measurement circuit

UST Measurement - CHL

• CHL is isolated by use of the UST measurement circuit

Overall Test Data

2-WINDING TRANSFORMER – OVERALL

Measurement Type Ref@10 kV

Test #	Energize	Ground	Guard	UST	Test kV	l mA	Cap pF	Watt Loss	PF [%] Measured	PF [%] Corrected	Correction Factor	Mode	Insulation Condition
ICH+ICHL	H (prim)	L (sec)			10.013	33.241	8814.88	0.746			1.00	GST	
ІСН	H (prim)		L (sec)		10.010	7.889	2089.50	0.217	0.28	0.28	1.00	GST gA	PASS
ICHL	H (prim)			L (sec)	10.013	25.355	6725.82	0.526	0.21	0.21	1.00	UST A	PASS
	Calculated ICHL					25.353	6725.38	0.529	0.21	0.21	1.00		PASS
	ICH-C1 =	ICH minus H	l (prim) bu	shings; HV	C1 ONLY	5.206	1377.91	0.156	0.30	0.30	1.00		PASS
ICL+ICHL	L (sec)	H (prim)			7.500	94.449	25051.64	2.375			1.00	GST	
ICL	L (sec)		H (prim)		7.501	69.096	18325.39	1.864	0.27	0.27	1.00	GST gA	PASS
ICHL	L (sec)			H (prim)	7.500	25.356	6725.70	0.519	0.20	0.20	1.00	UST A	PASS
	Calculated ICHL					25.353	6726.25	0.511	0.27	0.27	1.00		PASS
	ICL-C1 = ICL minus L (sec) bushings; LV C1 ONLY					58.678	15562.15	1.619	0.37	0.37	1.00		PASS
	•												

Bushing Taps

 \bigcirc

Field Tests

The following test are electrical field tests performed with portable test equipment to determine bushing suitability for service.

Condenser Bushing with Potential Tap	Condensers Bushing with Test Tap	Non Condenser
Visual Inspection	Visual Inspection	Visual Inspection
C1 Power Factor (60 Hz)	C1 Power Factor (60 Hz)	Energize Collar Test
C1 Capacitance (60 Hz)	C1 Capacitance (60 Hz)	Infrared Test
C2 Power Factor (2.5 kV)	C2 Power Factor (0.5 kV)	
C2 Capacitance (2.5 kV)	C2 Capacitance (0.5kV)	
Advance Power Factor Measurements	Advance Power Factor Measurements	
Power Factor Tip Up Test	Power Factor Tip Up Test	
Infrared Test	Infrared Test	

Bushing C1 Test Data

Bushings - NAMEPLATE

Bushing	Manufact.	Model/ Type	Year	Serial Number	Catalog Number	Drawing Number	BIL kV	kV Rating	A Rating	C1 PF[%]	C1 Cap (pF)	C2 PF[%]	C2 Cap (pF)
H1	ABB	O+C	1993				350	44.00	400	0.35	238		
H2	ABB	0+C	1993				350	44.00	400	0.26	240		
H3	ABB	0+C	1993				350	44.00	400	0.32	239		
H0													
X1	ABB	0+C	1993				150	25.00	2000	0.33	695		
X2	ABB	0+C	1993				150	25.00	2000	0.30	692		
X3	ABB	0+C	1993				150	25.00	2000	0.31	699		
X0	ABB	0+C	1993				150	25.00	2000	0.29	693		

Bushings - C1

Measure	ment Type	Ref@10 k\	V										
Bushing	Energize	Ground	Guard	UST	Test kV	l mA	Cap pF	Watt Loss	PF [%] Measured	PF [%] Corrected	Correction Factor	Mode	Insulation Condition
H1	Conductor	-	-	Тар	10.022	0.891	236.25	0.020	0.22	0.22	1.00	UST A	PASS
H2	Conductor	-	-	Тар	10.014	0.896	237.67	0.021	0.23	0.23	1.00	UST A	PASS
H3	Conductor	-	-	Тар	10.022	0.896	237.68	0.021	0.24	0.24	1.00	UST A	PASS
H0	Conductor	-	-	Тар							1.00	UST A	
X1	Conductor	-	-	Тар	7.505	2.617	694.15	0.062	0.24	0.24	1.00	UST A	PASS
X2	Conductor	-	-	Тар	7.506	2.560	679.08	0.058	0.23	0.23	1.00	UST A	PASS
X3	Conductor	-	-	Тар	7.506	2.631	697.78	0.061	0.23	0.23	1.00	UST A	PASS
X0	Conductor	-	-	Тар	7.505	2.610	692.23	0.063	0.24	0.24	1.00	UST A	PASS

Power Factor / Capacitance - BUSHING C2

• H1-C2 🗾 GST gA

Bushing C2 Test Data

Bushings - C2

Measurement Type <u>Ref@10 kV</u>

Bushing	Energize	Ground	Guard	UST	Test kV	l mA	Cap pF	Watt Loss	PF [%] Measured	PF [%] Corrected	Correction Factor	Mode	Insulation Condition
H1	Тар	-	Conductor	-	0.507	2.099	553.67	0.058	0.28	0.28	1.00	GST gA	PASS
H2	Тар	-	Conductor	-	0.505	2.301	607.14	0.074	0.32	0.32	1.00	GST gA	PASS
H3	Тар	-	Conductor	-	0.502	2.165	571.03	0.063	0.29	0.29	1.00	GST gA	PASS
H0	Тар	-	Conductor	-							1.00	GST gA	
X1	Тар	-	Conductor	-	0.508	0.887	232.41	0.063	0.71	0.71	1.00	GST gA	PASS
X2	Тар	-	Conductor	-	0.507	0.879	230.15	0.029	0.33	0.33	1.00	GST gA	PASS
X3	Тар	-	Conductor	-	0.507	0.873	228.82	0.023	0.27	0.27	1.00	GST gA	PASS
X0	Тар	-	Conductor	-	0.507	0.844	221.01	0.014	0.16	0.16	1.00	GST gA	PASS

Power Factor / Capacitance - BUSHING EC

- H1-EC **—** GST or UST
- UST and GUARD circuits can be used for external contamination investigation and/or isolation

Energized "Hot" Collar Test Data

Bushings - Energized Collar

Measurement Type Ref@10 kV

							Watt		Insulation
Bushing	Energize	Ground	Guard	UST	Test kV	l mA	Loss	Mode	Condition
H1	Collar	-	-	-	10.022	0.891	0.020	GST	PASS
H2	Collar	-	-	-	10.014	0.896	0.021	GST	PASS
H3	Collar	-	-	-	10.022	0.896	0.021	GST	PASS
HO	Collar	-	-	-				GST	
X1	Collar	-	-	-	10.006	1.973	0.061	GST	PASS
X2	Collar	-	-	-	10.016	1.974	0.060	GST	PASS
X3	Collar	-	-	-	10.008	1.973	0.062	GST	PASS
X0	Collar	-	-	-	10.020	1.975	0.061	GST	PASS

Transformer Exciting Current Test

- 1. Apply Voltage Vs on on primary phase, secondary winding left floating
- 2. Measure currurent I_{ex}
- 3. The current required to force ``transformer action'' (the use of one winding to induce a voltage in the second winding).

Exciting Current Test Procedure

Routine Test

•Perform test on each phase with the DETC on its "as found" position.

•DETC should not be moved unless specified by company or manufacturer

Ideally test should be performed on all phases at each LTC positions

Analyzing Results

Confirm Expected Phase Pattern Confirm Expected LTC Pattern (For load tap changing transformers) ➡ Compare to Previous Results Make sure same voltage is applied Magnitudes do not have to match Any change should be uniform across phases (similar percent change).

Analyzing Results

Confirming the Expected Phase Pattern:

1. High – Low – High (HLH) Pattern

- Expected for a 3-legged core type transformer.
- Expected for a 5-legged core (or shell) type transformer with a Delta connected secondary winding.
- 2. Low High Low (LHL) Pattern
 - Will be obtained on a 3-legged core type transformer *if* the traditional test protocals are not followed.

⇒Neutral on high side Wye-configured transformer is inaccessible

⇒Forget to ground 3rd terminal on a Delta-connected transformer

Expected for a 4-legged core type transformer.

- 3. All 3 Similar Pattern
 - Expected for a 5-legged core (or shell) type transformer with a non-delta secondary winding.

Exciting Current Test Transformer: HV – Delta LV - Wye

Test	HV Lead	LV Lead	Ground	Float	Mode	Measure	Result
1	H1	H3	H2, X0	X1,X2,X3	UST	H1-H3	63.8 mA
2	H2	H1	H3, X0	X1,X2,X3	UST	H2-H1	48.6 mA
3	H3	H2	H1, X0	X1,X2,X3	UST	H3-H2	64.2 mA

Exciting Current Test Transformer: HV – Wye LV - Delta

Test	HV Lead	LV Lead	Ground	Float	Mode	Measure	Result
1	H1	H0	NONE	X1,X2,X3	UST	H1-H0	78.8 mA
2	H2	H0	NONE	X1,X2,X3	UST	H2-H0	62.4 mA
3	H3	H0	NONE	X1,X2,X3	UST	H3-H0	80.2 mA

Inaccessible Neutral Bushing (H0)

Test	HV Lead	LV Lead	Ground	Float	Mode	Measure	Result
1	H1	H2	NONE	X1,X2,X3	UST	H1-H2	75.1 mA
2	H2	H3	NONE	X1,X2,X3	UST	H2-H3	73.2 mA
3	H3	H1	NONE	X1,X2,X3	UST	H3-H1	89.4 mA

Exciting Current LTC Pattern – Reactor Type

Leakage Reactance

- Leakage flux is flux that does not link all the turns of the winding
- Leakage flux creates reactive magnetic energy that behaves like an inductor in series in the primary and secondary circuits
- Winding movement changes the reluctance of the leakage flux path, resulting in a change in the expected leakage reactance measurement.

Leakage Reactance

Leakage Reactance

- Short circuit LV winding or "winding pairs"
- Inject 0.5 1.0% of rated current 60 Hz (Line-to-Line)
- A variable 280 VAC source is recommended
- Measure Series Current and Terminal Voltage
- RESULT $Z\Omega$, $R\Omega$, and $X\Omega$

- There are two ways to perform the measurement
 - 1. 3 Phase Equivalent
 - 2. Per Phase

Leakage Reactance – 3 Phase Equivalent

- Short LV terminals; do not include neutral
- Compare to nameplate +/- 3%

Inject	Short	Measure
H1-H3	X1, X2, X3	ZA, RA, XA, LA
H2-H1	X1, X2, X3	Zв, Rв, Xв, Lв
H3-H2	X1, X2, X3	Zc, Rc, Xc, Lc

Leakage Reactance – Per Phase

- Short corresponding LV terminals
- Compare deviation from average

Inject	Short	Measure
H1-H3	X1-X0, X1-X3	ZA, RA, XA, LA
H2-H1	X2-X0, X2-X1	Zв, Rв, Xв, Lв
H3-H2	X3-X0, X3-X2	Zc, Rc, Xc, Lc

Leakage Reactance – NAMEPLATE

CLASS MVA MVA	ONAN/ONAF/ONAF 18.00/24.00/30.00 20.16/26.88/33.60	3-PHASE 60 HZ CONT. TEMP. CONT. TEMP.	Z SER. RISE RISF	NO. 55°C 65°C	
HV LV LV NEUTRA	138000 DELTA 13090 GRDY/7560 L	VOLTS VOLTS	BIL BIL BIL	550 110 110	KV KV KV
IMPEDANCE	9.60 % AT 138000-13	3090 VOLTS	AND	18.00	MVA

$$\% Z = \frac{1}{60} \left[(Z_{AC} + Z_{BA} + Z_{CB}) (\frac{BasekVA_3}{kV_{ll}^2}) \right]$$

$$\% Z = \frac{1}{60} \left[(Z_{AC} + Z_{BA} + Z_{CB}) (\frac{18,000}{138^2}) \right]$$

Leakage Reactance – Example

Nameplate: 6.85% 69 kV 12.5 MVA

Phase	V	1	Ζ	R	X	L
H1-H3	55.22	1.05	51.59	4.38	51.41	136.4
H2-H1	54.68	1.05	51.15	4.37	50.96	135.2
H3-H2	54.46	1.05	50.96	4.46	50.76	134.2

$$\% Z = \frac{1}{60} [(Z_{AC} + Z_{BA} + Z_{CB})(\frac{BasekVA_3}{kV_{ll}^2})]$$

$$\% Z = \frac{1}{60} \left[(51.59 + 51.15 + 50.96)(\frac{12,500}{69^2}) \right]$$

%Z = 6.73

$$\Delta Z = \frac{6.85 - 6.73}{6.85} (100) \qquad \Delta Z = 2.04\%$$

Transformer Turns Ratio

Turns Ratio Test How is it performed?

Three Phase Transformer HV 34500GRDY/19920 Volts LV 13200 Volts

A Phase

Calculated Ratio			
19920	4 5 4		
13200 =	1.51		

<u>Measurement</u>			
Ratio	% Dev	Angle	
1.509	0.06%	0.05	

Test	Input	Measure	Phase Ratio
1	H1-H3	X1-X0	А
2	H2-H1	X2-X0	В
3	H3-H2	X3-X0	С
Turns Ratio Test Procedure

Routine Test

•Should perform turns ratio test on "as found" DETC positions

•Unless specified by company or manufacturer

Ideally turns ratio test on all LTC positions

•Place DETC in "as found" position

Analyzing Results

The turn ratio measurement results should be within 0.5% of nameplate markings according to IEEE C57.12.00-2006
 Results should also compare very closely among phases

⇒Any winding open circuits, short circuits and turn to turn shorts will show up change this measurement

⇒The phase angle measured between the high voltage and low voltage winding is generally very low.

Damage or deterioration in the core will increase the phase angle

Turn Ratio

Low-Voltage Exciting Current

Tap Changer Position

Transformer Winding Resistance

One Phase Transformer Equivalent Circuit

R1 = Power Loss in HV Rn = Iron Loss in Core winding

R2 = Power Loss in LV winding

```
L1= Leakage Inductance Lm = Core Inductance of HV Winding
```

```
L2= Leakage
Inductance of LV
Winding
```

Failure Modes

A change greater than the criteria mentioned can be indicative of the following:

- 1. Shorted Circuited Turns
- 2. Open Turns
- 3. Defective DETC or LTC (contacts)
- 4. A Poor Connection Between Terminals Measured

Winding Resistance

Principle of Winding Resistance Test

- 1. Inject DC Current from one terminal to the other terminal of a phase
- Measure the voltage drop across the two terminals' under test once core magnetic circuit has stabilized
- 3. As long as stable voltage DC source is used, winding inductance Xp is negligible.

$$Vp = Ip * Rp$$
 $Rp = Ip / Vp$

Winding Resistance

Very Important when Performing this test

- 1. Transformer high voltage and low voltage terminals need to be disconnected and isolated
- 2. Be aware and use saftey at all time. Make sure the winding is discharged after a test by grounding the terminal.
- 3. Never inject a DC current higher than 15% of the winding rated current
- 4. Temperature affects the test results and should be corrected to a common temperature of 75°C or 85°C
- 5. The temperature of insulated liquid has to be stabilized (top and bottom temperature should not deviate more than 5°C

Winding Resistance Test Example of how is it performed?

Three Phase Transformer

HV 230 Amps LV 350 Amps

Winding Temperature 35 C

B Phase

Winding ResistanceTest Procedure

- 1. By performing DC Winding Resistance test, this will magnetize your core. A magnetized core will affect your Exciting Current and SFRA Test Results.
- 2. Recommended to perform DC Winding Resistance last.
- **3.** Imporant to let the measurement stabilize. Depending on the size of the transformer could take up to several minutes

Winding ResistanceTest Procedure

Routine Test

Should perform test for phases on "as found" DETC positions

DETC should not be moved unless specified by company or manufacturer

Ideally test for phases on all LTC positions
Place DETC in "as found" position

DC Winding Resistance

DC Winding Resistance – Normal Pattern; but Unique

DC Winding Resistance

DC Winding Resistance

Transformer Nameplate

POS	Volts	LTC			
	X1-X2-X3	А	В	9	
16R	15180	8	8		
15R	15095	7	8		
14R	15010	7	7		
13R	14920	6	7		
12R	14835	6	6		
11R	14750	5	6		
10R	14660	5	5		
9R	14575	4	5	М	
8R	14490	4	4		
7R	14405	3	4		
6R	14320	3	3		
5R	14230	2	3		
4R	14145	2	2		
3R	14060	1	2		
2R	13970	1	1		
1R	13885	0	1		
Ν	13800	0	0		

N	13800	0	0	
1L	13715	8	0	
2L	13360	8	8	
3L	13540	7	8	
4L	13455	7	7	
5L	13370	6	7	
6L	13280	6	6	
7L	13195	5	6	
8L	13110	5	5	к
9L	13025	4	5	
10L	12940	4	4	
11L	12850	3	4	
12L	12765	3	3	
13L	12680	2	3	
14L	12590	2	2	
15L	12505	1	2	
16L	12420	1	1	

Connection 7 Common to 14R and 4L

Analyzing Results

The winding resistance measurement can be evaluated by the following three methods: (+/-5%)

- 1. Compare to Factory Results
- 2. Compare to Previous Results
- 3. Compare Among Phases

Thank You for Your Attention

