Transformer Basics - Why Temperature is Important

Trent Williams Application Engineer

Transformer Basics

- Paper Insulation Deteriorates at Elevated Temperatures
- Temperature Limits the Ability to Load a Transformer
- Higher Temperatures Lead to Gas Evolution and Insulation Damage

- Maximum Ambient per the IEEE Standard is 40° C (104°F)
- Allowable Temperature Rise of Top Oil above Ambient is Either 55 or 65° (131°F)
- Maximum Top Oil Temperature Is Either 95 or 105°
 C (221°F)
- Allowable Winding Rise Above Ambient per the IEEE Standard is 80° C (176°F)
- > Maximum Winding Temp Rise 120° C (248°F)

Your Cooling System Is Designed for these Temperatures!

How Does Temperature Affect Insulation?

- The Degree of Polymerization (DP) Indicates Paper Insulation Health
- > DP Decreases with Exposure to High Temperature
- Initially Paper Has a DP of 1000 to 1200¹
- > At End of Life DP Will Be About 125
- Once DP Is Zero, any Through Fault Could Cause Movement which may result in Dielectric Failure

Bubble Formation

- > All Transformers Have Some Moisture
- Bubble Formation Is the Generation of Water Vapor
- Bubble formation Occurs at Temperatures of 140° C
- Bubble Formation Leads to Transformer Failure

Transformer Basics

Heat Sources

Overcurrent

Heat Sources

- Overcurrent
- Harmonics or DC Offset

Harmonics and DC Offset

- Variable Speed Drives, Furnaces, Computer.
- Geomagnetically Induced Current
 - Solar Mass Ejections
 - Disturbance of Earth's Magnetosphere
 - Induced in Long Transmission Lines
 - NERC TPL-007-1 Over 200KV

Heat Sources

- Overcurrent
- Harmonics or DC Offset
- Overvoltage

Overvoltage

- System Voltage Problems
- Wrong Tap Selection
- Core Saturation Results in Overcurrent and Overheating

Heat Sources

- Overcurrent
- Harmonics or DC Offset
- Overvoltage
- Internal Problems

Internal Problems

- Not Detected by Gauge
 - Shorted Core Laminations
 - Inadvertent Core Ground
 - Case or Other Metal in Magnetic Field
 - Arcing

Heat Sources

- Overcurrent
- Harmonics or DC Offset
- Overvoltage
- Internal Problems
- LTC Problems

LTC Problems

- Contact Problems
 - Mainly Older LTC's
 - Coking of Contacts
 - Eventually Leads to Failure in LTC
 - Can Fail Transformer
 - Can be Detected if LTC is Monitored

Heating Sources

• Fans will aid cooling – ONAF

- Fans will aid cooling ONAF
- Adding an oil pump will further enhance cooling OFAF
- Cooling Provides More Load Capability

- Adding directed oil flow further enhances cooling DFOA or ODAF
- Baffles direct oil into the coils for greater cooling
- Design Has a small Gradient

- Keep your transformers hot and dry
- Don't touch your transformers unless absolutely necessary
- Use Predictive Maintenance
 - ✓ Monitor your temperatures
 - ✓ Let automatic controls operate cooling
 - Be proactive in exercising the cooling system
 - ✓ Use antisipatatory cooling
 - ✓ Monitor your load tap changers
 - ✓ Monitor gases
 - ✓ Monitor your bushings

- Electric Power Transformer Engineering, 3rd edition, CRC Press, Chapter 24, On-Line Monitoring of Liquid-Immersed Power Transformers
- IEEE Std C57.143-2012, IEEE Guide for Application for Monitoring Equipment to Liquid-Immersed Transformers and Components
- IEEE Std C57.91-2010, IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators

Advanced Power Technologies

Advances in Transformer Cooling Control and Monitoring

- > Oil Temperature Measurement
- Hot Spot Temperature Measurement Techniques
- New Strategies for Cooling Control
- Improving Reliability
- Load Tap Changer Condition Monitoring
- Strategies for Remote Communications and Local Monitoring

Oil Temperature

- Time constant (thermal lag) 2 to 3 hours. Responds very slowly.

Oil Temperature Measurement

Capillary Tube Technology:

Advantages:

- Inexpensive, Depending on Options
- Simpler to Retrofit

- Not Rugged
- Limited Accuracy
- Limited Telemetry Options
- Limited Flexibility for Control
- No Failure Alarm

Oil Temperature Measurement

Electronic Technology:

Advantages:

- Rugged
- Superior Accuracy
- Variety of Telemetry Options
- Built-in or Programmable
 Control Logic
- Built-in Device Alarms
- Easy to set

Disadvantages:

- Can be More Expensive
- Retrofit May be More Difficult

Advanced Power Technologies Hot Spot Temperature Measurement

Methods:

- Hot Spot Measurement by the Heated Well AKA - Simulated Method
- Direct or Fiber Optic Method
- Calculated Method

Winding Temperature

Used to Start Cooling

- Uses CT circuit to react to loading
- Resistive well with either mechanical gauge or RTD
- Does Not React Quickly to Sudden Load Increase

^{© 2011} Advanced Power Technologies, LLC

Temperature Probes in Wells

Mechanical Gauges

Heated Well

Sending unit with Heater

Hot Spot Measurement

Simulated Method:

Advantages:

• Low Initial Cost

- No Failure Alarms
- Inherently Inaccurate
- High Replacement Cost
- Limited Telemetry Options
- Limited Control Options
- Slowest Response Time

Hot Spot Measurement

Direct or Fiber Optic Method:

Advantages:

- Direct Hot Spot Measurement
- Telemetry Options
- Can be Most Accurate
- Fast Response Time

- Very High Cost
- Very Difficult to Retrofit
- Fragile, Difficult to Install

Calculated Method :

Advantages:

- Easy Retrofit
- Telemetry Options
- Lowest Maintenance
- Built-in Control Options
- Built-in Failure Alarms

- Not as Accurate as Direct Method
- Requires Access to WTI CT or Bushing CT's
- Slower Response Time

^{© 2011} Advanced Power Technologies, LLC

Calculated Method Continued:

 $T_{Winding_{U}} = T_{RTO} * (Load * CTRatio / RatedLoad)^{2*m} + T_{TopOil}$ [1] Where:

> $T_{Windingv} = Ultimate calculated winding temperature$ $T_{RTO} = Hot Spot Rise over Top Oil temperature at rated load$ Load = Measured load current CTRatio = Primary CT ratio Rated Load = Rated load current m = 1.0 for directed FOA or FOW, 0.8 for all other cooling $T_{TopOil} = Measured$ Top Oil temperature

^{© 2011} Advanced Power Technologies, LLC

Electronic Temperature Monitor Control Options:

 Set Points for Cooling Controls, Alarms, and Tripping Settable Through the Front Panel or PC

New Strategies For Cooling Control

Electronic Temperature Monitor Control Options:

- Set Points for Cooling Controls, Alarms, and Tripping Settable Through the Front Panel or PC
- Full Programmable Scheme Logic Reduces External Wiring

Advanced Power Technologies New Strategies For Cooling Control

Examples of Scheme Logic:

The outputs are completely programmable:

• Consolidate high temp alarms to control a single output:

OUT1 = SP11 + WSP1

Where SP11 is the top oil temp alarm and WSP1 is the winding temp alarm

- Control an output for fail-safe operation:
 OUT2 = !SP22
- Block operation of pumps in cold climates:
 OUT2 = !SP14 * (SP12 + WSP1+ LSP1)

Where SP14 is set to operate in Under Temp.

New Strategies For Cooling Control

Electronic Temperature Monitor Control Options:

- Set Points for Cooling Controls, Alarms, and Tripping Settable Through the Front Panel or PC
- Full Programmable
 Scheme Logic Reduces
 External Wiring
- Built-in Fan Bank Alternate Feature

New Strategies For Cooling Control

Electronic Temperature Monitor Control Options:

- Our Content of Cont
- Monthly, Weekly, Daily Fan Exercising Available
- Command Cooling on Sudden Increase of Load for Pre-Cooling

New Strategies For Cooling Control

New Strategies For Cooling Control

Electronic Temperature Monitor Control Options:

Universal Power Supplies

- Monthly, Weekly, Daily Fan Exercising Available
- Command Cooling on Sudden Increase of Load for Pre-Cooling
- Universal Temperature Probes Ease Retrofit

New Strategies For Cooling Control

Electronic Temperature Monitor Control Options:

Universal Power Supplies

- Monthly, Weekly, Daily Fan Exercising Available
- Command Cooling on Sudden Increase of Load for Pre-Cooling
- Universal Temperature Probes Ease Retrofit
- Alarms When Things Go Wrong.

Conventional Wisdom:

We Don't Need Electronic Temperature Monitors.

We Turn On Fans in May and Turn Them Off in October.

Conventional Wisdom Debunked:

- Increases Wear & Tear on Fans
- Running Fans Through the Summer Wastes Energy.
- How Will You Know When There is a High Temperature Alarm?

Improving Reliability

Load Profile:

The Analysis:

- 24 MVA Unit
- Unit Has Two Stages of Cooling With a Total of 12 fans.
- Each Fan Motor is 1/3 HP Running at 230VAC.
- Used NOAA Data to Extrapolate
- Compared Running Fans Continuously From May Through October vs. Automatic Control.

Improving Reliability

The Conclussion:

• Fans Run Continuously May-October:

18,243 Kwh

• Fans Automatically Controlled:

6,558 Kwh

• Total Savings:

11,685 Kwh

- Savings Minimal On Units Less Than 18 MVA.
- There Are Big Savings on More Lightly Loaded Units

LTC Condition Monitoring

• Telemetry Through Analog Outputs

 ASCII Data Through RS-232 For Protective Relays & SCADA

• DNP3.0 or MODBUS For Telemetry, Status and Control

- Report of Min and Max Temperatures
- Data Logging:
 - Rolling Data Log.
 - Data exports as a text file (CSV) to MS Excel.
 - Stores Months of Data Time Stamped Every 60 Min.
 - Selectable Time Base & Points for increased storage.
 - Power back up for clock to ride through outages

^{© 2011} Advanced Power Technologies, LLC

- Retrofitting of Capillary Tube Gauges with Electronic Temperature Monitors (ETM's) is an Economical Option.
- The Benefits of ETM's Outweigh the Drawbacks for use on all New Units.
- ETM's Permit Strategies to Lower Maintenance Costs.
- ETM's Permit Strategies to Improve Transformer Life.
- ETM's Allow Multiple Methods of Temperature Data Acquisition to Facilitate Better Loading Decisions and Forensics.
- An ETM with Top Oil and Winding Temperature Measurement Will Likely Cost Less Than a Mechanical Top Oil Gauge (then you still have to buy the winding gauge, a second well, and the heated well apparatus).

Advanced Power Technologies

